

Applied Period Presentation:

Growth Response of Douglas-firs (*Pseudotsuga* menziessii) to Temperature in Southwestern Germany

by Jaspar Albers (M.Sc. European Forestry 2009)

Supervisor: Bela Bender

Freiburg, 15.12.2009

Introduction

 an initial study to prepare the implementation of a dendroecological research project: *"Drought resistance of various Douglas-fir provenances"*

 effects of climatic variations on radial growth, especially intra-annual wood formation (wood density)

 ● different Douglas-fir provenances with differing reactions when exposed to stress (drought/heat) → elasticity!

Study area: Uhlberg

- close to Freiburg
- planted ~ 1933
- experimental plot of the FVA since 1953

 3 different thinning intensities on 3 plots (1-2-3) since 1961

Study area: Uhlberg

December 1999: "Lothar"!

Study area: Uhlberg

many trees were uprooted

 few single trees were left undamaged

• experiment was stopped in spring 2000

Study area: Distribution of surviving trees

Material

- 3 stem disks / tree
- Plot 1: 5 trees
- Plot 2: 2 trees
- Plot 3: 9 trees
- 16 trees

==> 48 samples taken in July 2009

Preparation

	Overview						
Measurement	P I o t	Tree Nr.	Tree- rings (1.30 m)	Tree- rings (11.50 m)	Tree- rings (16.60 m)	First date	
	1	004	74	62	54	1936	
	1	008	68	56	49	1942	
	1	017	74	59	48	1936	
	1	022	73	60	50	1937	
	1	056	73	58	51	1937	
	2	005	74	61	53	1936	
	2	030	74	62	54	1936	
	3	006	75	64	57	1935	
	3	015	69	55	47	1941	
	3	026	75	63	55	1935	
	3	033	74	60	54	1936	
Scanning the discs	3	041	74	59	50	1936	

As the overall aim of this AP study was to prepare the implementation of a larger research project, it was tailored specifically to influence the methods of sample collection.

Two practical questions were of interest:

1. From which part of the stand should the samples be taken? (Social classes?)

2. From which tree height should the samples be taken?

Social classes (1)

Which social class delivers higher correlations with climatic data?

Tree height (2)

From which tree height should the samples be taken?

Difficulties:

 higher disks with lesser treerings

 biologic/cambial age of samples (different increment rate)

- Temperature (°C)
- Annual mean (Freiburg
- Annual max. (Freiburg & Herdern)

Provided by DWD

(1) Classifying: By growth curves I Cumulated diameter growth (cm) h: 1.30 m ...similar picture for 11.50 & 16.60 m... ŝ

 $-006_1 - 030_1 - 005_1 - 056_1 - 022_1 - 017_1 - 008_1 - 004_1$

20

10

²8

(1) Classifying: By clustering II

Hierarchical Clustering

(1) Classifying: By history III

	1965 1976		1979	1982	
d +	25,0	35,0	37,4	39,8	
d m	20,3	30,1	32,0	34,1	
d -	15,4	24,2	25,7	27,5	
1_004	23,6	31,8	33,5	35,4	
1_008	18,4	27,8	30,5	32,9	
1_017	16,6	23,4	25,1	26,8	
1_022	21,0	29,6	31,4	33,3	
1 056	22,3	31,4	33,3	35,3	
d +	23,7	35,1	37,4	40,1	
d m	18,5	28,2	30,2	32,2	
d -	12,5	20,2	22,0	23,3	
2_005	31,5	41,4	43,8	45,9	
2 030	32,1	41,5	43,7	45,8	
d +	24,5	30,6	33,3	34,7	
d m	19,7	23,1	26,2	28,2	
d -	14,5	16,6	19,2	20,7	
3_006	27,0	34,6	36,5	38,8	
3_015	16,4	21,9	23,0	24,0	
3_026	28,8	34,3	35,5	37,0	
3_033	31,6	40,9	43,1	45,4	
3_041	20,2	22,7	23,5	24,3	
3_064	18,8	22,5	23,3	24,1	
3_070	20,5	23,3	23,7	24,1	
3_079	25,0	32,1	33,8	35,4	
3 103	25,4	32,7	34,3	36,1	

Mean diameter 1965 calculated by FVA 1976, '79, '82 complete (initially >measurements 500 trees) range (d+; d-) deducted by standard deviation rough bark deduction!

(1) Classifying: Dominant trees

(1) Comparison of classes

(1) Social classes – Correlations for 1.30 m

	Sample	T mean	T max		Sample	T mean	T max		
	Tree 004	0,09	-0,31		Tree 004	0,21	-0,22		
	Tree 008	0,28	-0,13		Tree 008	0,47	-0,06	 positive 	
	Tree 017	0,31	-0,18		Tree 017	0,31	-0,24	correlation v	values
	Tree 022	0,01	-0,26		Tree 022	0,18	-0,23	for T mean	
	Tree 056	0,03	-0,15		Tree 056	0,10	-0,10	ior i mean	
	Tree 005	-0,10	-0,31		Tree 005	0,08	-0,18		
	Tree 030	-0,26	-0,31		Tree 030	-0,07	-0,22	 lower corr 	elation
	Tree 006	-0,17	-0,39		Tree 006	0,10	-0,31	values for T	may
	Tree 015	0,10	-0,05		Tree 015	0.00	-0,10	values ior i	шал
	Tree 026	0,32	0,00		Tree 026	0.44	0.13		
	Tree 033	0,04	-0,30		Tree 033	0.31	-0.20		
	Tree 041	-0,13	-0,04		Tree 041	-0.30	-0.08		
	Tree 064	0,09	0,00		Tree 064	-0 10	-0 08		
	Tree 070	-0,08	0,03		Tree 070	-0 17	0 06	All corre	alations
	Tree 079	-0,23	-0,26		Tree 079	0 07	-0 12		
	Tree 103	-0,23	-0,19		Tree 103	0 15	0.01	were co	mputed
					1100 100	0,10	0,01	with	raw
	Mean Dom	0,03	-0,35					measur	rement
	Mean Sup	-0,01	-0,02					webuee	
								values	5 – no
			standard	disation					
1947 - 2008					19	47 - 199	was applied!		

(1) Social classes – Correlations for 11.50 m

Sample	T mean	T max	Sample	T mean	T max	
Tree 004	-0,38	-0,36	Tree 004	-0,27	-0,24	
Tree 008	-0,30	-0,29	Tree 008	-0,18	-0,14	
Tree 017	-0,31	-0,19	Tree 017	-0,34	-0,15	
Tree 022	-0,52	-0,31	Tree 022	-0,42	-0,22	
Tree 056	-0,46	-0,26	Tree 056	-0,36	-0,16	
Tree 005	-0,46	-0,30	Tree 005	-0,37	-0,17	
Tree 030	-0,49	-0,25	Tree 030	-0,41	-0,15	
Tree 006 🄇	-0,53	-0,39	Tree 006	-0,43	-0,31	
Tree 015	-0.39	0,11	Tree 015	-0,38	-0,06	
Tree 026	-0,38	-0,23	Tree 026	-0,34	-0,16	
Tree 033	-0,42	-0,24	Tree 033	-0,37	-0,14	
Tree 041	-0,23	-0,03	Tree 041	-0.41	-0.11	
Tree 064	-0,25	-0,08	Tree 064	-0.38	-0.10	
Tree 070	-0,31	-0,10	Tree 070	-0.34	-0.06	
Tree 079	-0,37	- <mark>0,2</mark> 3	Tree 079	-0.29	-0.11	
Tree 103	-0,43	-0,23	Tree 103	-0 26	-0 06	
					-,	
Mean Dom	-0,46	-0,28				
Mean Sup	-0,32	-0,08				

1955 - 2008

1955 - 1999

(1) Social classes – Correlations for 11.50 m (cont.)

(2) Tree heights – Correlations

Sample	T mean	T max	Sample	T mean	T max	Sample	T mean	T max		
Tree 004	-0,08	-0,36	Tree 004	-0,35	-0,47	Tree 004	-0,49	0,11		
Tree 008	0,08	-0,22	Tree 008	-0,20	-0,44	Tree 008	-0,49	-0,61		
Tree 017	0,11	-0,23	Tree 017	-0,12	-0,37	Tree 017	-0,47	0,42		
Tree 022	-0,22	-0,32	Tree 022	-0,56	-0,50	Tree 022	-0,55	-0,55		
Tree 056	-0,12	-0,22	Tree 056	-0,40	-0,41	Tree 056	-0,48	-0,44		
Tree 005	-0,11	-0,30	Tree 005	-0,46	-0,45	Tree 005	-0,53	-0,43		
Tree 030	-0,35	-0,33	Tree 030	-0,54	-0,42	Tree 030	0,61	-0,48		
Tree 006	-0,33	-0,42	Tree 006	-0,59	-0,56	Tree 006	-0,62	-0,47		
Tree 015	0,02	-0,03	Tree 015	-0,39	-0,15	Tree 015	0,17	-0,27		
Tree 026	0,37	0,07	Tree 026	-0,32	-0,38	Tree 026	-0,45	-0,29		
Tree 033	-0,02	-0,31	Tree 033	-0,39	-0,33	Tree 033	-0,51	-0,37		
Tree 041	-0,03	-0,02	Tree 041	0,05	0,06	Tree 041	-0,47	-0,18		
Tree 064	0,05	0,02	Tree 064	0,04	0,02	Tree 064	-0,45	-0,22		
Tree 070	-0,05	0,07	Tree 070	-0,13	-0,06	Tree 070	-0,31	-0,10		
Tree 079	-0,24	-0,28	Tree 079	-0,33	-0,44	Tree 079	-0,50	-0,32		
Tree 103	-0,26	-0,26	Tree 103	-0,41	-0,35	Tree 103	-0,49	-0,27		
	1.30 m			11.50 r	n	16.60 m				
1963 - 2008										

Results: Significant correlations – 16.60 m

Results: Significant correlations – 16.60 m

