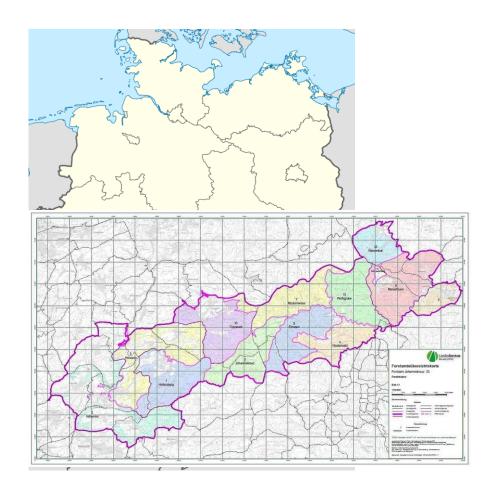
Applied Period at
Johanniskreuz Forest Office –
State Forest Administration
Rheinland Pfalz, Germany


SUMMARY

- 1. INTRODUCTION
- 2. HOST ORGANIZATION
- 3. ACTIVITES AT THE ORGANIZATION
- 4. INDIVIDUAL PROJECTS
- Oak Natural Regeneration
- Harvesting Operation Monitoring
- Stand marking and Volume Calculation
- 5. CONCLUSION
- 6. SWOT Analysis

INTRODUCTION

- AP in forest institutions MSc European Forestry
- 3rd June to 2nd August
- Forstamt Johanniskreuz:
- Rheiland Pfalz State
- Total Area: 22.512 hectares
- Species composition

Specie	Coverage
Beech	29 %
Oak	16 %
Norway Spruce	12 %
Douglas Fir	7 %

HOST ORGANISATION

- Traditional Close to Nature German way
- Multiple use of forestry :
- Manage the state forest
- Support the management of communal forests
- Give a contractual support on the management of private forests
- Supervise the compliance with legal forest rules and standards

Oak Natural Regeneration

- Natural x Artificial
- Fragility of oak seedlings:
- Acorn predation
- Browsing
- Insects and fungi pests
- Select Future Crop Trees (Mast)
- Remove competing vegetation
- Fence potential area (€)

Silviculture Treatments

- Natural processes preferred over interferences
- Silvicultural operations 4 phases:
- Establishment Phase: regenerate the stand with the desired specie, naturally or artificially, by sowing and planting
- Qualification Phase: achieve enough possible future tree, quality and well distributed
- Dimensioning Phase: choose the future crop trees and assist in their development
- Maturity Phase: support the growing of future crop trees, giving them space to grow, longest phase

Harvesting Planning

- 10 years Management Plan
- Forest ranger Annual plan
- manual vs. mechanized
- own employees vs. contractors

Hunting

- Terminal shoots, seedlings and acorns are eaten
- Roe Deer (Capreolus capreolus)
- Red Deer (*Cervus elaphus*)
- Wild Boars (Sus scrofa)

Grading System

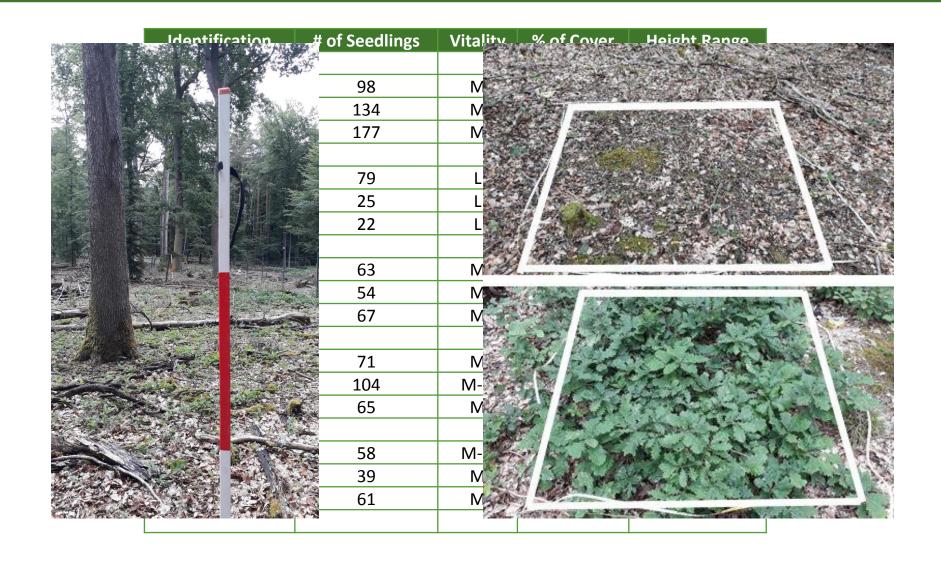
- The classification depends on log quality, color, straightness, defects, mineral deposits
- A Excellent quality (veneer, barrel)
- B Normal quality
- C Middle quality
- D Poor quality

Quality sorting for logs: Oak sorting table						
Chavastavistia		Qua	lity			
Characteristic	Α	A B		D		
Epicormics	allowed 1 je 2 m	allowed	allowed	allowed		
Defomities	unallowed	1 je 2 m	allowed	allowed		
Twisted grain	≤2	≤6 bis 4.Stkl. ≤7 ab 5.Stkl.	unlimited	unlimited		
Incomplete hardwood	unallowed	unallowed	unallowed	allowed		

INDIVIDUAL PROJECTS

- Cover the most important activities carried out here
- Personal interests
- The projects were carried out separately along my staying in Johanniskreuz
- PROJECT 1: Oak Natural Regeneration
- PROJECT 2: Harvesting Operation Monitoring
- PROJECT 3: Stand Marking and Volume Calculation

Project 1 - Oak Natural Regeneration


- Objective:
- To mark Beech trees that should be cut in order to give space and light to oak seedlings to grow
- To analyze and measure the development of oak natural regeneration, by implementing some transects and plots
- Fenced area (1,5 ha)
- 5 transects (20x20)
- 3 plots (2x2)

- South coordinate
- Strong competitor
- Too much branches

Project 2: Harvesting Operation Monitoring

Objective:

- Time and Movement Study
- Harvesting Operation Cost

The activities considered in the dynamics of this operation were:

MD – Machine Displacement: considered the displacement of the machine in the site

CD – Crane Displacement: considered the displacement only of the crane in direction to the tree

HHP - Harvester Head Positioning: Refers to the positioning of the harvester head to start the tree feeling

FE – Felling: referred to the activation of the chain until the complete feeling of the tree

PR - Processing: it was considered as the time which the rollers and knives slid over the tree trunk

TP – Technical pause: considered time spent with current adjustment, personal break

Observations	MD	CD	ННР	FE	PR	TP	Total	TIME (min)
1	107	88	39	63	32	25	354	60
(%)	30,23	24,86	11,02	17,80	9,04	7,06	100	
2	82	47	19	17	1	22	188	31
(%)	43,62	25,00	10,11	9,04	0,53	11,70	100	31
3	114	100	40	55	18	180	507	84
(%)	22,49	19,72	7,89	10,85	3,55	35,50	100	04

A Input data					
Purchase price of the complete machine incl.			- 1	Service V.	
assembly and transfer costs, accessories,				310.00	_
discounts, discount excluding VAT	An				€
Residual	R	1		88.571	
Obsolescence in years (max. useful life)	N.				Years
Total technical useful life in MAS	H			27.000	
Depreciation period in years	AJ Ama			- 5	Years
Depreciation period in MAS	Ama 8	2 2	2 0	19.286	MAS
Load threshold H:N	Sw			3.857	
Estimated annual utilization (MAS/year)	а	0 9 5 3		1.500	100
Fuel consumption in I/MAS	Kv			10,00	Liter/MA S
Fuel costs Incl. transport and storage	Kk		3 3	1,30	€/Liter
Factor for repair and maintenance	T			1,10	
Factor for lubricant costs	sm	1 1	3 3	0,25	
Interest rate In %	1		m nymanasa sa	8,00	%
B Material costs		€/Jahr	Summ e	98,41	€MAS
Depreciation A		Count		00,41	CINAC
If a greater or equal to 5w, then (An- R):Amas					-2000271
If a is less than Sw then (An-R) : (A] x a)		15.942.8	9 4	29,52	€/MAS
Financing (A+R) : 2) x I % :100	5	6		10.63	€/MAS
Maintenance costs (RW)	_				
(To:H) x r				12,63	€/MAS
Operating material costs (B)				2003/01/	20 P. D. C.
Kv x Kk x (1 + sm)		12.225.0		16,25	€/MAS
Transfer, arrival and departure/year	7	0		8.15	€/MAS
- Material costs (machine costs, low loaders, car kilometers): 2 €/MAS		3.000,00	6	- Nederle	2758011
 Wage costs (driver's wage, trigger): labor costs € x 0.15 		9.225,00			
Other costs/year (S)		San Northead	8 8		
differentiated estimate	Σ	31.840,0 0		21,23	€/MAS
- Liability Insurance	Control of	700,00		Carrier S	2750078:==
		4.340.00			
- Technical machine insurance 1.4% of Na		4.040,00			

TOTAL HARV. OPERATION TIME	02:55:00
TECHNICAL PAUSE	00:88:00
EFECTIVE HARV. OPERATION	02:47:00
COST OF HARV. OPERATION/PMH	€ 139,41
TOTAL COST OF HARV. OPERATION	€ 387,56
TOTAL # TREES HARVESTED	227
TREES HARVESTED/PMH	81,65
TOTAL REVENUE	€ 227,00
REVENUE/PMH	€ 81,65
TOTAL PROFIT	- € 160,56
PROFIT/PMH	- € 57,76

KWF Institute – Machine Cost Calculation Guideline

Project 3: Stand Marking and Volume Calculation

Objective:

- To prepare 2 stands to be harvested
- Propose the best harvesting method

Regul	ar Cost	Additional Cost (Harv	ester + Skidder)
Ind. Volume	Price (€/m3)	Ind. Volume	Price €
0,41 - 0,49	€ 13,85	0,50 - 0,59	€ 4,49
0,50 - 0,55	€ 13,59	0,60 - 0,69	€ 4,29
0,56 - 0,60	€ 13,33	0,70 - 0,79	€ 4,09
0,61- 0,70	€ 13,06	0,80 - 0,89	€ 3,80
0,71 - 0,80	€ 12,81	0,90 - 0,99	€ 3,23
> 0,81	€ 12,54	>100	€ 2,73

Species	Product	Price (per m³, rm, t atro)	Conversion Factor	Price after Conv. Factor
Pine (Ki)	AB+	€ 65,00		
Pine (Ki)	AB-	€ 33,50	0,65	€ 51,54
Pine (Ki)	Ind. Wood	€ 70,00	2,1	€ 33,33
Pine (Ki)	Pallet	€ 57,50		
Beech (Bu)	Ind. Wood	€ 60,00	1,5	€ 40,00
Beech (Bu)	Pallet	€ 55,00		

STAND 1

Manual Harvesting Method Cost:	18,16 €/m³
Mechanical Harvesting Method Cost:	15,10 €/m³
Pine Revenue (Manual Harvesting Method):	40,58 €/m³
Pine Revenue (Mechanical Harvesting Method):	58,46 €/m³
Beech Revenue	50,5 €/m³
FINAL MANUAL HARVESTING METHOD PROFIT:	29,44 €/m³
FINAL MECHANICAL HARVESTING METHOD PROFIT:	37,72 €/m³

STAND 2

Manual Harvesting Method Cost:	19,87 €/m³
Mechanical Harvesting Method Cost:	15,57 €/m³
Pine Revenue (Manual Harvesting Method):	40,58 €/m³
Pine Revenue (Mechanical Harvesting Method):	58,47 €/m³
FINAL MANUAL HARVESTING METHOD PROFIT:	20,71 €/m³
FINAL MECHANICAL HARVESTING METHOD PROFIT:	42,90 €/m³

CONCLUSION

PROJECT 1:

- Size of gaps and light are related to success of natural oak regeneration
- Fencing regeneration areas, marking future crop trees and cutting competitors trees have being effective measures so far (€)
- Keep searching for new solutions and methods to improve the natural oak regeneration

PROJECT 2:

- To delineate well the machine and crane displacement, optimal solution
- Main goal of helping with the site vulnerability, this smaller productivity was already expected
- Harvesting operational costs, as expected, the profit was not positive

PROJECT 3:

- Mechanical harvesting method seems to be the most profitable one in both stands
- Selling of wood in different assortments, harvester machine over a chain saw is the most productive option

SWOT ANALYSIS

STRENGTHS	WEAKNESSES
 Close to nature management 	 Lack of communication (English speakers)
 One of the highest productivities in Rheinland-Pfalz 	 Technology in forest operations
State	 Reduced number of workers
 High Species Stand diversity 	 Disagreement with the proposed 10-year Mng Plan
 Experienced Forest Rangers 	
OPPORTUNITIES	THREATS
 Improve technological level in forest operations 	 Bark Beetle attack
 Bioeconomy Trends 	 Market Price oscillation in the next 2 years
 Cooperative elaboration of the Mng Plan with the 	Oak natural regeneration development
responsible government authorities	 Forest Management Plan lacks
 Review of Forest Office structure 	

Danke dir sehr!

MSc European Forestry - Renata Aguayo E-mail: renata_aguayo@hotmail.com

