

• Contents.

- I. General information about the host organisation.
- 2. Description of my work and activities.
 - 2.1. Main project and related work.
 - 2.2. Laboratory work.
 - 2.3. Data analysis and results.
 - 2.3. Other activities.
- 3. Analysis of the host Organisation.

I. General information about the host Organisation.

- Albert Ludwig University of Freiburg:
- Founded in the year 1457.

- Focus on the interactions between environment and society: sustainable use and conservation of natural resources.
- Around 25,000 students from over 100 nations are matriculated in 180 degree programs at 11 faculties. 7000 professors and lecturers.

I. General information about the host Organisation.

• Faculty of Environment and Natural Resources:

- 3 institutes (Forest Sciences, Earth and Environmental Sciences and Environmental Social Sc. And Geography).
- Around 1300 students and 250 PhD.
- 35 full professors.
- 17 Chairs.
- Main research areas: Sustainable use of natural resources and renewable energy, defense of natural resources, adaptation to global change and natural hazards.

I. General information about the host Organisation.

- Chair of Forest Growth
- Around 18 PhD students.
- 8 external lecturers: Brazil, USA...
- 5 main research areas:
- Forest growth and environment.
- Trees as natural resource and carbon storage.
- Trees as archive of environmental conditions.
- Methods of forest growth research.
- International research networks.

Contents.

I. General information about the host organisation.

2. Description of my work and activities.

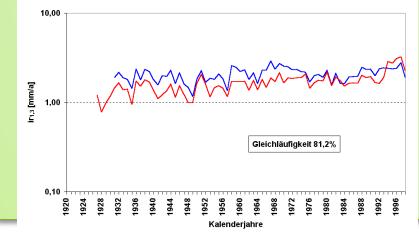
- 2.1. Main project and related work.
- 2.2. Laboratory work.
- 2.3. Data analysis and results.
- 2.3. Other activities.

3. Analysis of the host Organisation.

- 2.1. Main proyect and related work.
 - Name of the Project: Dendroecological wood structure analysis of European Beech.
 - Main goals:
 - To assess the environmental signals through the wood anatomical features in order to achieve a better adaptation of beech to climate change.
 - A better understanding of the responses of **xylem anatomy** under **stressful conditions**.

- 2.1. Main proyect and related work.
 - Why is this project important?
- Beech distribution in Europe.

- **Climate change impacts**: water limitation, higher stress...
- European forest system is very inert (Schelhaas et al., 2015): need to study the **adaptation mechanisms** beforehand to be prepared on time.
- Crucial role of water transport in plant performance and survival: Nowadays deeplier study thanks to computerized image-analysis systems.


2.1. Main proyect and related work.

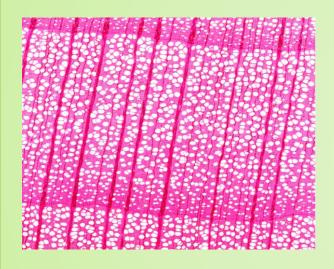
Experiment desing:

2 different aspects:

NE: climate in 2015 SW: expected climate in 50-100 y

- . No thinning (control)
- 2. Light thinning: BA=15 m2/ha.
- 3. Strong thinning: BA=10 m2/ha.

Source: www.agrobyte.com


Previous studies of this proyect: Growth in NE aspect is higher than SW.

FREIBURG

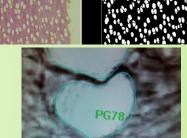
2.2. Laboratory work.

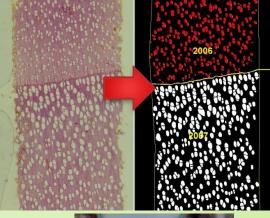
My main task in this process: Hydraulic response of European beech to aspect and thinning.

- → RCTA Mean percentage of conductive area within xylem; CTA / XA [%].
- → MCA Mean conduit size [microns2].
- → CD Global mean conduit density; CNo / XA [no./mm2].
- sum Kh Accumulated Potential hydraulic conductivity [kg*m*Mpa-1*s-1] as approximated by Poiseuille's law and adjusted to elliptical tubes.

2.2. Laboratory work.

Sample preparation: Working with a microtome.
Pictures obtained with a scanned transmitted-light microscope.

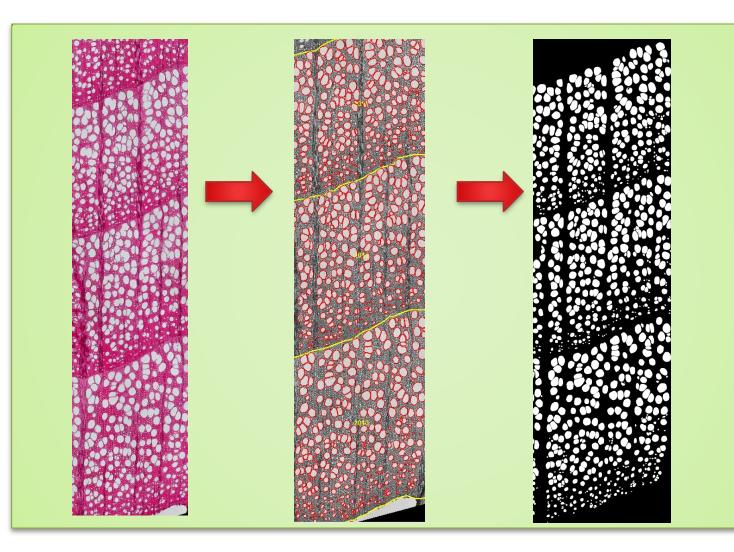

Years measured: 5 years before and 5 years after the thinnings (1998-1999)


2.2. Laboratory work.

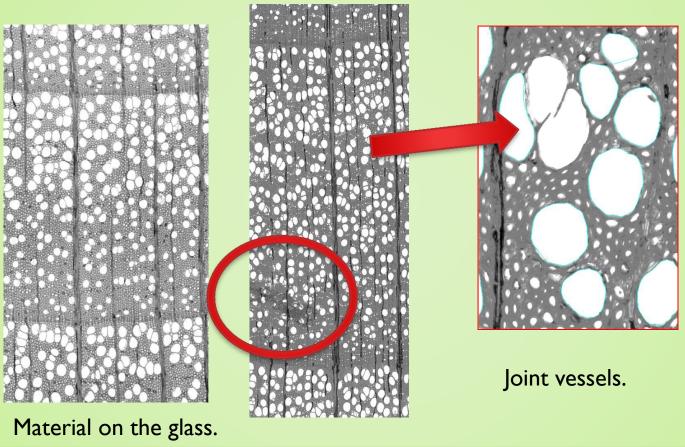
How to **analyze** the xylem vessels?

- Software Roxas + Image-Pro plus.

- **Image preparation**: modifying colour, contrast...
- Steps followed during this process:
- I. Determining the **ring borders**.
- 2. The **software** looks for the **vessels** in the selected area (s).
- 3. Vessels undetected by the software are manually detected.
- 4. Finding mistakes in the selection, lost vessels...
- 5. **Correcting** mistakes.



Applied period at Albert Ludwig University ofFreiburg. Chair of Forest Growth.2.2. Laboratory work.



UNI FREIBURG

2.2. Laboratory work.

But this is not so easy...

2.2. Laboratory work.

Analyzing software: main inconvenients.

 Problems with not-powerful computers: up to 11 min. to analyze certain images, slow responses when changing tools...high levels of patience required.

- **Analysis capacity** heavy relays on the quality of the picture taken, which cannot be determined beforehand.

It also depends on:

- The number of years showed in the picture and lenght of the intra-annual surface.
- The numbers and size of vessels found: some pictures have 80% of them found by the program, others 10%.
- Random mistakes are very difficult to determine and solve!

Contents.

- I. General information about the host Organisation.
- 2. Description of my work and further activities.
 - 2.1. Main project and related work.
 - 2.2. Laboratory work.
 - 2.3. Data analysis.
 - 2.3. Other activities.

3. Analysis of the host Organisation.

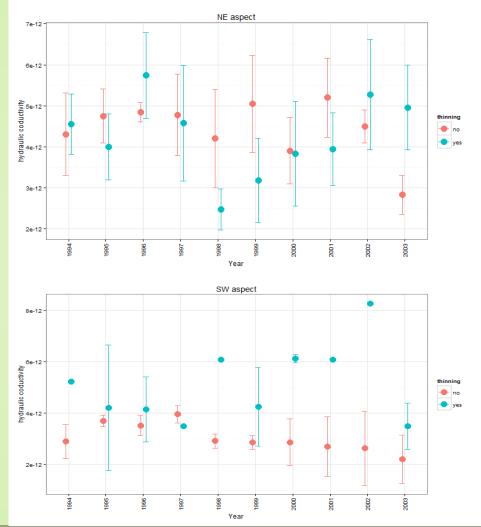
FREIBURG

2.2. Data analysis and results.

Analyzing the data:

- The output of this software is very complete.
- Excel datafiles→Discovering Rstudio programme.
- Still few years measured.

2.2. Data analysis and results.

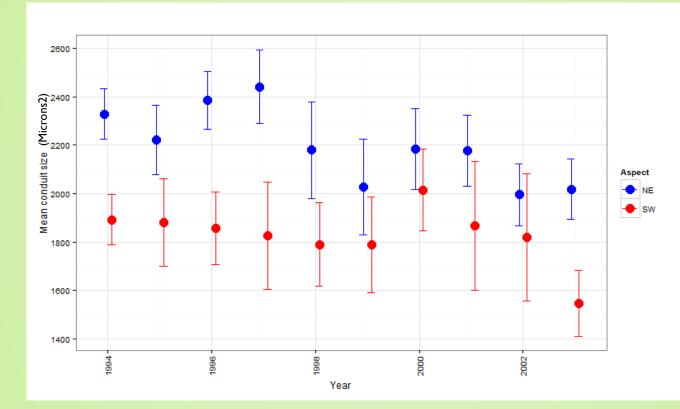

Hydraulic conductivity

Still few years measured:

 Thinning effect can be clearly seen in NE aspect but not in SW.

-Not same **quantity of samples** per year =Not accurate results.

-No clear trends for the moment.



UNI FREIBURG

2.2. Data analysis and results.

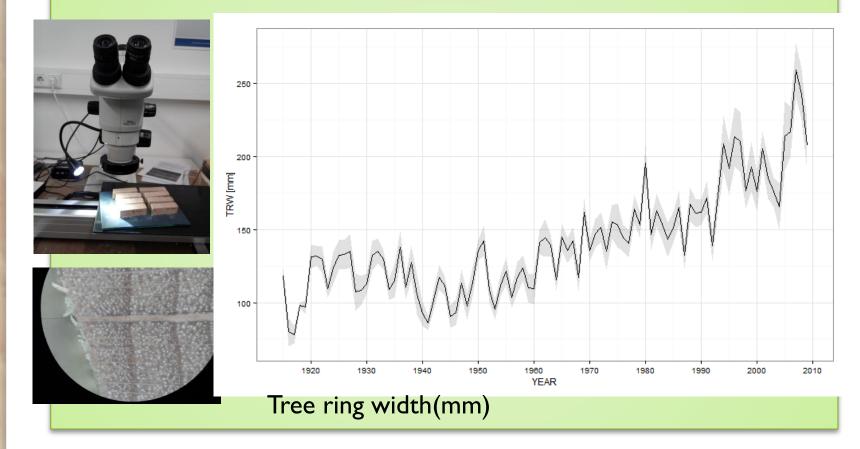
Mean conduct size

Vessels significantly higher in NE aspect (no matter the treatment).

Contents.

I. General information about the host Organisation.

2. Description of my work and activities.


- 2.1. Main project and related work.
- 2.2. Laboratory work.
- 2.3. Data analysis.
- 2.3. Other activities.
- 3. Analysis of the host Organisation.

IBURG

UNI FREI

2.3. Other activities.

• Ring measurements: high precision with the PAST4 software

2.3. Other activities.

• Growth analysis.

UNI FREIBURG

Applied period at Albert Ludwig University of

Freiburg. Chair of Forest Growth.

Description of my work and activities

Field trip: Breisach mixed broadleaf research plot.

- Main species: Prunis avium, Acer pseudoplatanus, Fraxinus excelsior and Populus sp.

Aims:

- Development of long-rotation forestry systems to obtain valuable timber in combination to annual crops such as weat or maize or short rotation forestry trees such as poplars.
- To study the effects of prunning treatments on growing phenology and seasonal growth dynamics.

Thank you very much for your attention!

Bibliography:

Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Mart-Jan Schelhaas, Gert-Jan Nabuurs, Geerten Hengeveld, Christopher Reyer, Marc Hanewinkel, Niklaus E. Zimmermann, Dominik Cullmann.-Regional environmental Change, 2015. http://link.springer.com/article/10.1007/s10113-015-0788-z

Studying global change through investigation of the plastic responses of xylem anatomy in tree rings.

Fonti PI, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D. - New Phytol, 2010.

Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. G von Arx, SR Archer, MK Hughes - Annals of botany, 2012 .